Saturday, February 23, 2019

The Quantum Asymmetry Factor: Quantum Collisional Broadening from increased CO2 with increased absorption coefficiency

This is the topic of Prof. Pierrehumbert's 2011 Physics Today article (pdf) that I did a blog post on earlier.

But as he states - the physics involved is complicated - and relies on statistics. Essentially - there is "borrowed" energy from collisions that then enables the quantum frequency resonance to occur at absorption - at the same atmospheric pressure.

There I think I summed it up better than anything I've read so far!

Oh so you can also has "pressure broadening" - which is, instead of increasing the molecule collisions from increased number of molecules - you are basically squashing the molecules as pressure increase.




So then when we combine water and CO2 (pdf) - the quantum asymmetry factor kicks in.

Oh yeah? What's that?

Quantum asymmetry between time and space | Proceedings of the ...



by JA Vaccaro - ‎2016 - ‎Cited by 8 - ‎Related articles
Jan 20, 2016 - Quantum asymmetry between time and space ...... The coefficient Bn becomes proportional to the Gaussian function exp ⁡ [ − ( 2 n − N ) 2 / 2 N ] ...
The underlying time–space asymmetry here can be traced to the fact that the state, and the matter it represents, is presumed to undergo continuous translation over time (as time evolution), but there is no corresponding presumption about the state undergoing translations over space. Even in relativistic quantum field theory, where both time and space are treated equally as the coordinates of a space–time background, a similar asymmetry holds, because time evolution and conservation laws are presumed to operate differently over time and space.

Causal Asymmetry in a Quantum World


by J Thompson - ‎2018 - ‎Cited by 10 - ‎Related articles
Jul 18, 2018 - In classical modeling, time's arrow manifests in the differing resource costs between future prediction and past retrodiction. Quantum models ...
Missing: factor ‎| ‎Must include: ‎factor

Takayanagi Hideaki, ‎Nakano Hayato, ‎Nitta Junsaku - 2008
The coupling coefficient Ma is written as Ma = Aq(de” "d), (7) with Aq being the amplitude of the e-ph ... O = 4TLTR/T is the asymmetric factor of the quantum dot.
 OK so.... noncommutative phase rearing its ugly head again like Kali.

by C Van Winter - ‎1954 - ‎Cited by 13 - ‎Related articles
The secular equation then splits immediately into four factors related to the four possible symmetry species of the eigenfunctions (Sec. 6). The confusion ...
























No comments:

Post a Comment