Many researchers suspect chimeras arise naturally. The brain itself seems to be a complicated kind of chimera, in that it simultaneously sustains both synchronous and asynchronous firing of neurons. Last year, researchers found qualitative similarities between the destabilization of chimera states and epileptic seizures. “We believe that further detailed studies may open new therapeutic methods for promoting seizure prediction and termination,” said co-author Iryna Omelchenko of the University of Berlin.
But the chimera state is still not fully understood. Kuramoto worked out the math verifying that the state is self-consistent, and therefore possible, but that doesn’t explain why it arises. Strogatz and Abrams further developed the math, but other researchers want “a more seat-of-the-pants, physical explanation,” Strogatz said, adding, “I think it’s fair to say that we haven’t really hit the nail on the head yet” about why the chimera state occurs.
Good Vibrations
https://www.quantamagazine.org/physicists-discover-exotic-patterns-of-synchronization-20190404/
scientists have also discovered that asymmetry helps stabilize synchronous states. “It is a little bit paradoxical,” Hart admitted. In February, Motter, Hart, Raj Roy of the University of Maryland and Yuanzhao Zhang of Northwestern reported in Physical Review Letters that introducing an asymmetry into a cluster actually strengthens its synchrony. For example, making the coupling between two oscillators in the cluster unidirectional instead of mutual not only doesn’t disturb the cluster’s synchrony, it actually makes its state more robust to noise and perturbations from elsewhere in the network.
No comments:
Post a Comment